Purifying SLIC Superpixels to Optimize Superpixel-Based Classification of High Spatial Resolution Remote Sensing Image

Author:

Tong Hengjian,Tong Fei,Zhou Wei,Zhang Yun

Abstract

Fast and accurate classification of high spatial resolution remote sensing image is important for many applications. The usage of superpixels in classification has been proposed to accelerate the speed of classification. However, although most superpixels only contain pixels from single class, there are still some mixed superpixels, which mostly locate near the edge of different classes, and contain pixels from more than one class. Such mixed superpixels will cause misclassification regardless of classification methods used. In this paper, a superpixels purification algorithm based on color quantization is proposed to purify mixed Simple Linear Iterative Clustering (SLIC) superpixels. After purifying, the mixed SLIC superpixel will be separated into smaller superpixels. These smaller superpixels are pure superpixels which only contain a single kind of ground object. The experiments on images from the dataset BSDS500 show that the purified SLIC superpixels outperform the original SLIC superpixels on three segmentation evaluation metrics. With the purified SLIC superpixels, a classification scheme in which only edge superpixels are selected to be purified is proposed. The strategy of purifying edge superpixels not only improves the efficiency of the algorithm, but also improves the accuracy of the classification. The experiments on a remote sensing image from WorldView-2 satellite demonstrate that purified SLIC superpixels at all scales can generate classification result with higher accuracy than original SLIC superpixels, especially at the scale of 20 × 20 , for which the accuracy increase is higher than 4%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3