Satellite Retrieval of Downwelling Shortwave Surface Flux and Diffuse Fraction under All Sky Conditions in the Framework of the LSA SAF Program (Part 2: Evaluation)

Author:

Carrer Dominique,Moparthy Suman,Vincent Chloé,Ceamanos Xavier,C. Freitas Sandra,Trigo Isabel F.ORCID

Abstract

High frequency knowledge of the spatio-temporal distribution of the downwelling surface shortwave flux (DSSF) and its diffuse fraction (fd) at the surface is nowadays essential for understanding climate processes at the surface–atmosphere interface, plant photosynthesis and carbon cycle, and for the solar energy sector. The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility for Land Surface Analysis operationally delivers estimation of the MDSSFTD (MSG Downwelling Surface Short-wave radiation Fluxes—Total and Diffuse fraction) product with an operational status since the year 2019. The method for retrieval was presented in a companion paper. Part 2 now focuses on the evaluation of the MDSSFTD algorithm and presents a comparison of the corresponding outputs, i.e., total DSSF and diffuse fraction (fd) components, against in situ measurements acquired at four Baseline Surface Radiation Network (BSRN) stations over a seven-month period. The validation is performed on an instantaneous basis. We show that the satellite estimates of DSSF and fd meet the target requirements defined by the user community for all-sky (clear and cloudy) conditions. For DSSF, the requirements are 20 Wm−2 for DSSF < 200 Wm−2, and 10% for DSSF ≥ 200 Wm−2. The mean bias error (MBE) and relative mean bias error (rMBE) compared to the ground measurements are 3.618 Wm−2 and 0.252%, respectively. For fd, the requirements are 0.1 for fd < 0.5, and 20% for fd ≥ 0.5. The MBE and rMBE compared to the ground measurements are −0.044% and −17.699%, respectively. The study also provides a separate analysis of the product performances for clear sky and cloudy sky conditions. The importance of representing the cloud–aerosol radiative coupling in the MDSSFTD method is discussed. Finally, it is concluded that the quality of the aerosol optical depth (AOD) forecasts currently available is accurate enough to obtain reliable diffuse solar flux estimates. This quality of AOD forecasts was still a limitation a few years ago.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3