A 35-year daily global solar radiation dataset reconstruction at the Great Wall Station, Antarctica: First results and comparison with ERA5, CRA40 reanalysis, and ICDR (AVHRR) satellite products

Author:

Zeng Zhaoliang,Wang Xin,Wang Zemin,Zhang Wenqian,Zhang Dongqi,Zhu Kongju,Mai Xiaoping,Cheng Wei,Ding Minghu

Abstract

Solar radiation drives many geophysical and biological processes in Antarctica, such as sea ice melting, ice sheet mass balance, and photosynthetic processes of phytoplankton in the polar marine environment. Although reanalysis and satellite products can provide important insight into the global scale of solar radiation in a seamless way, the ground-based radiation in the polar region remains poorly understood due to the harsh Antarctic environment. The present study attempted to evaluate the estimation performance of empirical models and machine learning models, and use the optimal model to establish a 35-year daily global solar radiation (DGSR) dataset at the Great Wall Station, Antarctica using meteorological observation data during 1986–2020. In addition, it then compared against the DGSR derived from ERA5, CRA40 reanalysis, and ICDR (AVHRR) satellite products. For the DGSR historical estimation performance, the machine learning method outperforms the empirical formula method overall. Among them, the Mutli2 model (hindcast test R2, RMSE, and MAE are 0.911, 1.917 MJ/m2, and 1.237 MJ/m2, respectively) for the empirical formula model and XGBoost model (hindcast test R2, RMSE, and MAE are 0.938, 1.617 MJ/m2, and 1.030 MJ/m2, respectively) for the machine learning model were found with the highest accuracy. For the austral summer half-year, the estimated DGSR agrees very well with the observed DGSR, with a mean bias of only −0.47 MJ/m2. However, other monthly DGSR products differ significantly from observations, with mean bias of 1.05 MJ/m2, 3.27 MJ/m2, and 6.90 MJ/m2 for ICDR (AVHRR) satellite, ERA5, and CRA40 reanalysis products, respectively. In addition, the DGSR of the Great Wall Station, Antarctica followed a statistically significant increasing trend at a rate of 0.14 MJ/m2/decade over the past 35 years. To our best knowledge, this study presents the first reconstruction of the Antarctica Great Wall Station DGSR spanning 1986–2020, which will contribute to the research of surface radiation balance in Antarctic Peninsula.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3