Prediction of Bonding Strength of Externally Bonded SRP Composites Using Artificial Neural Networks

Author:

Kekez SofijaORCID,Krzywoń RafałORCID

Abstract

External bonding of fiber reinforced composites is currently the most popular method of strengthening building structures. Debonding performance is critical to the effectiveness of such strengthening. Many models of bond prediction can be found in the literature. Most of them were developed based on laboratory research, therefore, their accuracy with less popular strengthening systems is limited. This manuscript presents the possibility of using a model based on neural networks to analyze and predict the debonding strength of steel-reinforced polymer (SRP) and steel-reinforced grout (SRG) composites to concrete. The model is built on the basis of laboratory testing of 328 samples obtained from the literature. The results are compared with a dozen of the most popular analytical methods for predicting the load capacity. The prediction accuracy in the neural network model is by far the best. The total correlation coefficient reaches a value of 0.913 while, for the best analytical method (Swiss standard SIA 166 model), it is 0.756. The sensitivity analysis confirmed the importance of the modulus of elasticity and the concrete strength for debonding. It is also interesting that the width of the element proved to be very important, which is probably related to the low variability of this parameter in the laboratory tests.

Funder

Silesian University of Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3