Abstract
Prominence of concrete is characterized by its high mechanical properties and durability, combined with multifunctionality and aesthetic appeal. Development of alternative eco-friendly or multipurpose materials has conditioned improvements in concrete mix design to optimize concrete production speed and price, as well as carbon footprint. Artificial neural networks represent a new and efficient tool in achieving optimal concrete mixtures according to its intended function. This paper addresses concrete mix design and the application of artificial neural networks (ANNs) for self-sensing concrete. The authors review concrete mix design methods and the development of ANNs for prediction of properties for various types of concrete. Furthermore, the authors present developments and applications of ANNs for prediction of compressive strength and flexural strength of carbon nanotubes/carbon nanofibers (CNT/CNF) reinforced concrete using experimental results for the learning process. The goal is to bring the ANN approach closer to a variety of concrete researchers and possibly propose the implementation of ANNs in the civil engineering practice.
Subject
General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献