Modelling and Scaling-Up of a Supercritical Fluid Extraction of Emulsions Process

Author:

Tirado Diego F.1ORCID,Cabañas Albertina2ORCID,Calvo Lourdes3ORCID

Affiliation:

1. Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia

2. Department of Physical Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain

3. Department of Chemical and Materials Engineering, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain

Abstract

Supercritical CO2 (scCO2) is utilized in the supercritical fluid extraction of emulsions (SFEE) to swiftly extract the organic phase (O) from an O/W emulsion. The dissolved substances in the organic phase precipitate into small particles and remain suspended in the water (W) with the aid of a surfactant. The process can be continuously conducted using a packed column in a counter-current flow of the emulsion and scCO2, at moderate pressure (8–10 MPa) and temperature (37–40 °C). To ensure the commercial viability of this technique, the organic solvent must be separated from the CO2 to facilitate the recirculation of both streams within the process while minimizing environmental impact. Thus, the aim of this work was to design a plant to produce submicron materials using SFEE, integrating the recovery of both solvents. First, experimental equilibrium data of the ternary system involved (CO2/ethyl acetate/water) were fitted with a proper thermodynamic model. Then, simulations of the whole integrated process at different scales were carried out using Aspen Plus®, along with economical evaluations. This work proposes the organic solvent separation with a distillation column. Thus, the two solvents can be recovered and recycled to the process in almost their entirety. Furthermore, the particles in the aqueous raffinate are produced free of solvents and sterilized for further safe use. The costs showed an important economy scale-up. This work could ease the transfer of the SFEE technology to the industry.

Funder

Ministry of Science, Innovation and Universities of Spain

Universidad Nacional de Colombia

Complutense University of Madrid

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3