Abstract
Transmission efficiency is a significant index of the transmission system. Even though much research has been carried out to calculate gear transmission efficiency, only a few of them studied spiral bevel gear due to its complexity. Moreover, spiral bevel gear does not have a “standard surface”, which means more complex coupling relations between different parameters and makes efficiency optimal design more difficult. Therefore, an instantaneous transmission efficiency computing model of a spiral bevel gear was set up based on loaded tooth contact analysis and hybrid elasto-hydrodynamic lubrication theory. Then, the particle swarm optimization–gravitational search algorithm (PSOGSA) optimal model was constructed to obtain the best parameters that maximize the average transmission efficiency of spiral bevel gears. Control parameters and machining parameters are optimized in sequence based on the proposed optimal model. The results showed that both optimal designs could help improve transmission efficiency, but the range of machining parameters is limited in a small interval because of the complex coupling relations. Therefore, the machining parameters optimization are conducted after control parameters optimization, which showed good results. Transmission efficiency was finally improved to 98.78%, which increased more than 4% at least. The proposed optimal model could also be applied into other gear design methods or even other fields.
Funder
the National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献