Untersuchung von Kompromisslösungen zwischen NVH und Wirkungsgrad im Kegelraddesign

Author:

Grabovic EugeniuORCID,Artoni Alessio,Gabiccini Marco,Ciulli Enrico

Abstract

AbstractMinimizing NVH and friction-induced power losses is becoming paramount in the design of geared transmissions. The aim of this paper is to present an automatic methodology to explore Pareto-optimal designs of bevel gears when minimization of noise and frictional losses is essential. In the first part, a semi-empirical model to estimate frictional power losses under elasto-hydrodynamic lubrication is described. The model has been validated against experimental data available in the literature in previous works by the authors. The efficiency calculation is coupled with a state-of-the-art loaded tooth contact analysis (LTCA) tool to obtain accurate predictions of the instantaneous load shared by the mating tooth pairs during the meshing cycle. In the second part, an automatic framework based on multi-objective optimization (MOO) is presented where the tooth micro-geometry is systematically designed. The design variables are represented by few coefficients of a polynomial basis that embodies the tooth flank ease-off topography. To ensure manufacturability, the polynomial modifications are projected onto the feasible set of the machine-tool envelopes. This step is achieved through a state-of-the-art identification algorithm that the authors have developed in previous work. Frictional losses are estimated with the aforementioned model, whereas the NVH level is measured by the loaded transmission error (LTE), directly available from the simulation tool. The maximum contact pressures are limited by the material properties, thus proper nonlinear constraints are prescribed. Application to a test case involving the design of a spiral bevel gearset reveals that the methodology presented allows the designer to obtain Pareto-optimal solutions in a systematic and automatic manner.

Funder

Università di Pisa

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3