In-House 3D-Printed vs. Conventional Bracket: An In Vitro Comparative Analysis of Real and Nominal Bracket Slot Heights

Author:

Brucculeri LucaORCID,Carpanese Claudia,Palone MarioORCID,Lombardo Luca

Abstract

Aims: The purpose of this study was to evaluate the accuracy of the slot height of in-house 3D-printed resin brackets, comparing them with other types of brackets on the market today, both ceramic and metallic. Methods: Seven different types of bracket systems were selected. For each system, ten brackets for tooth 2.1 with 0.022 × 0.028-inch slots were selected (total n° 70). Considering the whole sample, five types were commercially available and two were in-house 3D-printed. The entire sample was divided into four different groups according to the bracket material and the method of holding the archwire. Precision pin gauges with 0.002-mm increments were inserted inside the slot of each bracket, and the slot heights were measured, microscopically ensuring that the gauge completely filled the slot, with full contact between both the bottom and the top of the slot. Results: With respect to the other five types of brackets on the market, the two types of in-house 3D-printed resin brackets showed great accuracy of slot height (0.558 ± 0.001 mm). There was a statistically significant difference between the real height measured and the nominal height declared by the manufacturers (p < 0.05) of all the samples investigated, with the exception of in-house 3D-printed resin brackets. Furthermore, the difference in slot height accuracy between commercially manufactured and in-house 3D-printed resin brackets was statistically significant. Conclusions: In-house 3D-printed resin brackets have a remarkably precise slot height, unlike commercially available brackets, whose slot heights tend to be significantly oversized with respect to the nominal values declared by the manufacturers.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3