Optimization of 99mTc-MAA SPECT/CT Imaging for 90Y Radioembolization Using a 3D-Printed Phantom

Author:

Ungania Sara,D’Arienzo Marco,Nocentini Sandro,D’Andrea MarcoORCID,Bruzzaniti Vicente,Marconi Raffaella,Mezzenga EmilioORCID,Cassano Bartolomeo,Infusino Erminia,Guerrisi Antonino,Soriani Antonella,Strigari LidiaORCID

Abstract

Radioembolization (RE) with 90Y-microspheres has gained widespread acceptance as a safe and effective technique for treating liver malignancies. Accurate quantification in RE is a key step in treatment planning optimization and is becoming a pressing issue in light of the Directive 2013/59/EURATOM. The aim of this study was to develop a SPECT/CT imaging protocol for quantitative imaging optimization in RE based on cutting edge imaging technology (Symbia IntevoTM system provided with the innovative xSPECT software) and a novel anthropomorphic 3D-printed phantom. In the present study, 99mTc-labeled macroaggregated albumin was used as a surrogate radiopharmaceutical for treatment planning. Gamma camera calibration factors and recovery coefficients were determined performing preliminary SPECT/CT acquisitions of a point source, a cylindrical homogeneous phantom and the NEMA/IEC phantom. Data reconstruction was performed using the built-in xSPECT package, using both the Ordered Subset Expectation–Maximization (OSEM) and the Ordered Subset Conjugated Gradient (OSCG) algorithm. Specific regions of interest (ROIs) were drawn on the MIM 6.1.7 system according to the physical volume. The quantification procedure was validated using the anthropomorphic phantom provided with a fillable liver section and spheres of different diameters (20 mm, 40 mm and a 40 mm spherical shell). The measured activity concentration in all geometries is consistent within 4%, demonstrating that the xSPECT software permit an absolute quantification in anthropomorphic geometry largely within the 10% recommended from the manufacturer. Caution is advised in the presence of spherical objects with a necrotic core, as underestimations in the order of 20% were obtained.

Funder

Italian Association for Cancer Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3