Analysis of AI-Based Single-View 3D Reconstruction Methods for an Industrial Application

Author:

Hartung JuliaORCID,Dold Patricia M.ORCID,Jahn AndreasORCID,Heizmann MichaelORCID

Abstract

Machine learning (ML) is a key technology in smart manufacturing as it provides insights into complex processes without requiring deep domain expertise. This work deals with deep learning algorithms to determine a 3D reconstruction from a single 2D grayscale image. The potential of 3D reconstruction can be used for quality control because the height values contain relevant information that is not visible in 2D data. Instead of 3D scans, estimated depth maps based on a 2D input image can be used with the advantage of a simple setup and a short recording time. Determining a 3D reconstruction from a single input image is a difficult task for which many algorithms and methods have been proposed in the past decades. In this work, three deep learning methods, namely stacked autoencoder (SAE), generative adversarial networks (GANs) and U-Nets are investigated, evaluated and compared for 3D reconstruction from a 2D grayscale image of laser-welded components. In this work, different variants of GANs are tested, with the conclusion that Wasserstein GANs (WGANs) are the most robust approach among them. To the best of our knowledge, the present paper considers for the first time the U-Net, which achieves outstanding results in semantic segmentation, in the context of 3D reconstruction tasks. Unlike the U-Net, which uses standard convolutions, the stacked dilated U-Net (SDU-Net) applies stacked dilated convolutions. Of all the 3D reconstruction approaches considered in this work, the SDU-Net shows the best performance, not only in terms of evaluation metrics but also in terms of computation time. Due to the comparably small number of trainable parameters and the suitability of the architecture for strong data augmentation, a robust model can be generated with only a few training data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3