ENERDGE: Distributed Energy-Aware Resource Allocation at the Edge

Author:

Avgeris MariosORCID,Spatharakis DimitriosORCID,Dechouniotis DimitriosORCID,Leivadeas ArisORCID,Karyotis VasileiosORCID,Papavassiliou SymeonORCID

Abstract

Mobile applications are progressively becoming more sophisticated and complex, increasing their computational requirements. Traditional offloading approaches that use exclusively the Cloud infrastructure are now deemed unsuitable due to the inherent associated delay. Edge Computing can address most of the Cloud limitations at the cost of limited available resources. This bottleneck necessitates an efficient allocation of offloaded tasks from the mobile devices to the Edge. In this paper, we consider a task offloading setting with applications of different characteristics and requirements, and propose an optimal resource allocation framework leveraging the amalgamation of the edge resources. To balance the trade-off between retaining low total energy consumption, respecting end-to-end delay requirements and load balancing at the Edge, we additionally introduce a Markov Random Field based mechanism for the distribution of the excess workload. The proposed approach investigates a realistic scenario, including different categories of mobile applications, edge devices with different computational capabilities, and dynamic wireless conditions modeled by the dynamic behavior and mobility of the users. The framework is complemented with a prediction mechanism that facilitates the orchestration of the physical resources. The efficiency of the proposed scheme is evaluated via modeling and simulation and is shown to outperform a well-known task offloading solution, as well as a more recent one.

Funder

CHIST-ERA-2018-DRUID-NET project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3