Evaluation of GAN-Based Model for Adversarial Training

Author:

Zhao Weimin1ORCID,Mahmoud Qusay H.1ORCID,Alwidian Sanaa1

Affiliation:

1. Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada

Abstract

Deep learning has been successfully utilized in many applications, but it is vulnerable to adversarial samples. To address this vulnerability, a generative adversarial network (GAN) has been used to train a robust classifier. This paper presents a novel GAN model and its implementation to defend against L∞ and L2 constraint gradient-based adversarial attacks. The proposed model is inspired by some of the related work, but it includes multiple new designs such as a dual generator architecture, four new generator input formulations, and two unique implementations with L∞ and L2 norm constraint vector outputs. The new formulations and parameter settings of GAN are proposed and evaluated to address the limitations of adversarial training and defensive GAN training strategies, such as gradient masking and training complexity. Furthermore, the training epoch parameter has been evaluated to determine its effect on the overall training results. The experimental results indicate that the optimal formulation of GAN adversarial training must utilize more gradient information from the target classifier. The results also demonstrate that GANs can overcome gradient masking and produce effective perturbation to augment the data. The model can defend PGD L2 128/255 norm perturbation with over 60% accuracy and PGD L∞ 8/255 norm perturbation with around 45% accuracy. The results have also revealed that robustness can be transferred between the constraints of the proposed model. In addition, a robustness–accuracy tradeoff was discovered, along with overfitting and the generalization capabilities of the generator and classifier. These limitations and ideas for future work will be discussed.

Funder

Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference25 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3