Net Ecosystem Exchange of Carbon Dioxide in Rice-Spring Wheat System of Northwestern Indo-Gangetic Plains

Author:

Kumar AmitORCID,Bhatia Arti,Sehgal Vinay KumarORCID,Tomer RituORCID,Jain Niveta,Pathak Himanshu

Abstract

Rice growing under anaerobic conditions followed by spring wheat under an aerobic environment differentially impact the net ecosystem exchange (NEE) of carbon dioxide (CO2) in rice-wheat systems of the north-western Indo-Gangetic Plains (IGP). This is the first estimation of the NEE in a rice-spring wheat sequence via the eddy covariance technique in the north-western Indo-Gangetic Plains, which was partitioned into gross primary productivity (GPP) and ecosystem respiration (RE) and correlated with the environmental variables. Higher CO2 uptake of −10.43 g C m−2 d−1 was observed in wheat during heading as compared to −7.12 g C m−2 d−1 in rice. The net uptake of CO2 was 25% lower in rice. The average daily NEE over the crop season was −3.74 and −5.01 g C m−2 d−1 in rice and wheat, respectively. The RE varied from 0.07–9.00 g C m−2 d−1 in rice and from 0.05–7.09 g C m−2 d−1 in wheat. The RE was positively correlated with soil temperature at 5 cm depth (0.543, p < 0.01) in rice and with air temperature (0.294, p < 0.01) in wheat. The GPP was positively correlated with air temperature (0.129, p < 0.05) and negatively correlated with vapor pressure deficit (VPD) (−0.315, p < 0.01) in rice. In wheat, GPP was positively correlated with air temperature (0.444, p < 0.01) and soil moisture (0.471, p < 0.01). The rate of GPP over the crop duration was nearly the same in both rice and wheat, however, the RE was higher in rice as compared to wheat, thus, the ratio of cumulative RE/GPP was 0.51 in rice and much lower at 0.34 in spring wheat. Rice contributed 46% and 43% to the annual totals of RE and GPP, respectively, while spring wheat contributed 36% and 51%. The NEE of CO2 was higher in spring wheat at −576 g C m−2 d−1 as compared to −368 g C m−2 in rice. Thus, while estimating the carbon sink potential in the intensively cultivated northern IGP, we need to consider that spring wheat may be a moderately stronger sink of CO2 as compared to rice in the rice-wheat system.

Funder

Indian Council of Agricultural Research

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference57 articles.

1. Low carbon option for sustainable agriculture;Bhatia;Ind. Farm.,2013

2. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013

3. Eddy Covariance Flux Tower: A Promising Technique for Greenhouse Gases Measurement;Kumar;Adv. Plants Agric. Res.,2017

4. Aggregate-associated N and global warming potential of conservation agriculture-based cropping of maize-wheat system in the north-western Indo-Gangetic Plains

5. Greenhouse Gas Mitigation in Indian Agriculture in Agro-Technologies for Adaptation to Climate Change;Kumar,2015

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3