Analysis of the Full-Size Russian Corpus of Internet Drug Reviews with Complex NER Labeling Using Deep Learning Neural Networks and Language Models

Author:

Sboev AlexanderORCID,Sboeva Sanna,Moloshnikov Ivan,Gryaznov Artem,Rybka RomanORCID,Naumov AlexanderORCID,Selivanov AntonORCID,Rylkov Gleb,Ilyin VyacheslavORCID

Abstract

The paper presents the full-size Russian corpus of Internet users’ reviews on medicines with complex named entity recognition (NER) labeling of pharmaceutically relevant entities. We evaluate the accuracy levels reached on this corpus by a set of advanced deep learning neural networks for extracting mentions of these entities. The corpus markup includes mentions of the following entities: medication (33,005 mentions), adverse drug reaction (1778), disease (17,403), and note (4490). Two of them—medication and disease—include a set of attributes. A part of the corpus has a coreference annotation with 1560 coreference chains in 300 documents. A multi-label model based on a language model and a set of features has been developed for recognizing entities of the presented corpus. We analyze how the choice of different model components affects the entity recognition accuracy. Those components include methods for vector representation of words, types of language models pre-trained for the Russian language, ways of text normalization, and other pre-processing methods. The sufficient size of our corpus allows us to study the effects of particularities of annotation and entity balancing. We compare our corpus to existing ones by the occurrences of entities of different types and show that balancing the corpus by the number of texts with and without adverse drug event (ADR) mentions improves the ADR recognition accuracy with no notable decline in the accuracy of detecting entities of other types. As a result, the state of the art for the pharmacological entity extraction task for the Russian language is established on a full-size labeled corpus. For the ADR entity type, the accuracy achieved is 61.1% by the F1-exact metric, which is on par with the accuracy level for other language corpora with similar characteristics and ADR representativeness. The accuracy of the coreference relation extraction evaluated on our corpus is 71%, which is higher than the results achieved on the other Russian-language corpora.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3