Adverse Drug Reaction Concept Normalization in Russian-Language Reviews of Internet Users

Author:

Sboev AlexanderORCID,Rybka RomanORCID,Gryaznov Artem,Moloshnikov Ivan,Sboeva Sanna,Rylkov Gleb,Selivanov AntonORCID

Abstract

Mapping the pharmaceutically significant entities on natural language to standardized terms/concepts is a key task in the development of the systems for pharmacovigilance, marketing, and using drugs out of the application scope. This work estimates the accuracy of mapping adverse reaction mentions to the concepts from the Medical Dictionary of Regulatory Activity (MedDRA) in the case of adverse reactions extracted from the reviews on the use of pharmaceutical products by Russian-speaking Internet users (normalization task). The solution we propose is based on a neural network approach using two neural network models: the first one for encoding concepts, and the second one for encoding mentions. Both models are pre-trained language models, but the second one is additionally tuned for the normalization task using both the Russian Drug Reviews (RDRS) corpus and a set of open English-language corpora automatically translated into Russian. Additional tuning of the model during the proposed procedure increases the accuracy of mentions of adverse drug reactions by 3% on the RDRS corpus. The resulting accuracy for the adverse reaction mentions mapping to the preferred terms of MedDRA in RDRS is 70.9% F1-micro. The paper analyzes the factors that affect the accuracy of solving the task based on a comparison of the RDRS and the CSIRO Adverse Drug Event Corpus (CADEC) corpora. It is shown that the composition of the concepts of the MedDRA and the number of examples for each concept play a key role in the task solution. The proposed model shows a comparable accuracy of 87.5% F1-micro on a subsample of RDRS and CADEC datasets with the same set of MedDRA preferred terms.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Reference47 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3