An Internet of Things (IoT)-Based Master-Slave Regionalized Intelligent LED-Light-Controlling System

Author:

Lee Chun-TeORCID,Chen Liang-BiORCID,Chu Huan-Mei,Hsieh Che-Jen,Liang Wei-Chieh

Abstract

Reducing residential and industrial electricity consumption has been a goal of governments around the world. Lighting sources account for a large portion of the whole energy/power consumption. Unfortunately, most of the existing installed lighting systems are ancient and have poor energy efficiency. Today, many manufacturers have introduced light-controlling systems into the current market. However, existing light controlling systems may not be successfully applied to buildings, streets, and industrial buildings due to high costs and difficult installation and maintenance. To combat this issue, this article presents an easy-to-install, low-cost, Master-Slave intelligent LED light-controlling system based on Internet of Things (IoT) techniques. The benefit of using the proposed system is that the brightness of the LED lights in the same zone can be changed simultaneously to save in energy consumption. Furthermore, the parameters of the LED lights can be directly set. Moreover, the related data are collected and uploaded to a cloud platform. In this article, we use 15 W T8 LED tubes (non-induction lamps) as a case study. When the proposed system is installed in a zone with few people, the energy-saving rate is as high as 90%. Furthermore, when 12 people pass by a zone within one hour, its energy-saving rate can reach 81%. Therefore, the advantages of using the proposed system include: (1) the original lamp holder can be retained; (2) no wiring is required; and (3) no server is set up. Moreover, the goal of energy saving can also be achieved. As a result, the proposed system changes the full-dark mode of the available sensor lamp to the low power low-light mode for standby. Further, it makes the sensor lamps in the same zone brighten or low-light way simultaneously, which can quickly complete large-scale energy-saving and convenient control functions of intelligent LED lighting controlling system.

Funder

Ministry of Science and Technology (MoST), Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3