A Distributed Intelligent Lighting Control System Based on Deep Reinforcement Learning

Author:

Fang Peixin1ORCID,Wang Ming1ORCID,Li Jingzheng1,Zhao Qianchuan2ORCID,Zheng Xuehan1,Gao He13

Affiliation:

1. School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China

2. Department of Automation, Tsinghua University, Beijing 100018, China

3. Shandong Zhengchen Technology Co., Ltd., Jinan 250101, China

Abstract

With the rapid development of human society, people’s requirements for lighting are also increasing. The amount of energy consumed by lighting systems in buildings is increasing, but most current lighting systems are inefficient and provide insufficient light comfort. Therefore, this paper proposes an intelligent lighting control system based on a distributed architecture, incorporating a dynamic shading system for adjusting the interior lighting environment. The system comprises two subsystems: lighting and shading. The shading subsystem utilizes fuzzy control logic to control lighting based on the room’s temperature and illumination, thereby achieving rapid control with fewer calculations. The lighting subsystem employs a Deep Deterministic Policy Gradient (DDPG) algorithm to optimize the luminaire dimming problem based on room illuminance in order to maximize user convenience while achieving uniform illumination. This paper also includes the construction of a prototype box on which the system is evaluated in two distinct circumstances. The results of the tests demonstrate that the system functions properly, has stability and real-time performance, and can adapt to complex and variable outdoor environments. The maximum relative error between actual and expected illuminance is less than 10%, and the average relative error is less than 5% when achieving uniform illuminance.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3