Autonomous Multiple Tramp Materials Detection in Raw Coal Using Single-Shot Feature Fusion Detector

Author:

Li Dongjun,Meng Guoying,Sun Zhiyuan,Xu Lili

Abstract

In the coal mining process, various types of tramp materials will be mixed into the raw coal, which will affect the quality of the coal and endanger the normal operation of the equipment. Automatic detection of tramp materials objects is an important process and basis for efficient coal sorting. However, previous research has focused on the detection of gangue, ignoring the detection of other types of tramp materials, especially small targets. Because the initial Single Shot MultiBox Detector (SSD) lacks the efficient use of feature maps, it is difficult to obtain stable results when detecting tramp materials objects. In this article, an object detection algorithm based on feature fusion and dense convolutional network is proposed, which is called tramp materials in raw coal single-shot detector (TMRC-SSD), to detect five types of tramp materials such as gangue, bolt, stick, iron sheet, and iron chain. In this algorithm, a modified DenseNet is first designed and a four-stage feature extractor is used to down-sample the feature map stably. After that, we use the dilation convolution and multi-branch structure to enrich the receptive field. Finally, in the feature fusion module, we designed cross-layer feature fusion and attention fusion modules to realize the semantic interaction of feature maps. The experiments show that the module we designed is effective. This method is better than the existing model. When the input image is 300 × 300 pixels, it can reach 96.12% MAP and 24FPS. Especially in the detection of small objects, the detection accuracy has increased by 4.1 to 95.57%. The experimental results show that this method can be applied to the actual detection of tramp materials objects in raw coal.

Funder

the National Key Research and Development Program of China under Grant

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3