End-to-End Deep Learning CT Image Reconstruction for Metal Artifact Reduction

Author:

Bauer Dominik F.ORCID,Ulrich ConstantinORCID,Russ TomORCID,Golla Alena-KathrinORCID,Schad Lothar R.,Zöllner Frank G.ORCID

Abstract

Metal artifacts are common in CT-guided interventions due to the presence of metallic instruments. These artifacts often obscure clinically relevant structures, which can complicate the intervention. In this work, we present a deep learning CT reconstruction called iCTU-Net for the reduction of metal artifacts. The network emulates the filtering and back projection steps of the classical filtered back projection (FBP). A U-Net is used as post-processing to refine the back projected image. The reconstruction is trained end-to-end, i.e., the inputs of the iCTU-Net are sinograms and the outputs are reconstructed images. The network does not require a predefined back projection operator or the exact X-ray beam geometry. Supervised training is performed on simulated interventional data of the abdomen. For projection data exhibiting severe artifacts, the iCTU-Net achieved reconstructions with SSIM = 0.970±0.009 and PSNR = 40.7±1.6. The best reference method, an image based post-processing network, only achieved SSIM = 0.944±0.024 and PSNR = 39.8±1.9. Since the whole reconstruction process is learned, the network was able to fully utilize the raw data, which benefited from the removal of metal artifacts. The proposed method was the only studied method that could eliminate the metal streak artifacts.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3