Automated Prediction of Extraction Difficulty and Inferior Alveolar Nerve Injury for Mandibular Third Molar Using a Deep Neural Network

Author:

Lee JunseokORCID,Park JumiORCID,Moon Seong YongORCID,Lee KyoobinORCID

Abstract

Extraction of mandibular third molars is a common procedure in oral and maxillofacial surgery. There are studies that simultaneously predict the extraction difficulty of mandibular third molar and the complications that may occur. Thus, we propose a method of automatically detecting mandibular third molars in the panoramic radiographic images and predicting the extraction difficulty and likelihood of inferior alveolar nerve (IAN) injury. Our dataset consists of 4903 panoramic radiographic images acquired from various dental hospitals. Seven dentists annotated detection and classification labels. The detection model determines the mandibular third molar in the panoramic radiographic image. The region of interest (ROI) includes the detected mandibular third molar, adjacent teeth, and IAN, which is cropped in the panoramic radiographic image. The classification models use ROI as input to predict the extraction difficulty and likelihood of IAN injury. The achieved detection performance was 99.0% mAP over the intersection of union (IOU) 0.5. In addition, we achieved an 83.5% accuracy for the prediction of extraction difficulty and an 81.1% accuracy for the prediction of the likelihood of IAN injury. We demonstrated that a deep learning method can support the diagnosis for extracting the mandibular third molar.

Funder

Institute of Information & Communications Technology Planning & Evaluation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3