Evaluating Human versus Machine Learning Performance in a LegalTech Problem

Author:

Orosz TamásORCID,Vági RenátóORCID,Csányi Gergely MárkORCID,Nagy DánielORCID,Üveges IstvánORCID,Vadász János PálORCID,Megyeri AndreaORCID

Abstract

Many machine learning-based document processing applications have been published in recent years. Applying these methodologies can reduce the cost of labor-intensive tasks and induce changes in the company’s structure. The artificial intelligence-based application can replace the application of trainees and free up the time of experts, which can increase innovation inside the company by letting them be involved in tasks with greater added value. However, the development cost of these methodologies can be high, and usually, it is not a straightforward task. This paper presents a survey result, where a machine learning-based legal text labeler competed with multiple people with different legal domain knowledge. The machine learning-based application used binary SVM-based classifiers to resolve the multi-label classification problem. The used methods were encapsulated and deployed as a digital twin into a production environment. The results show that machine learning algorithms can be effectively utilized for monotonous but domain knowledge- and attention-demanding tasks. The results also suggest that embracing the machine learning-based solution can increase discoverability and enrich the value of data. The test confirmed that the accuracy of a machine learning-based system matches up with the long-term accuracy of legal experts, which makes it applicable to automatize the working process.

Funder

National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. LawSum: A weakly supervised approach for Indian Legal Document Summarization;Parikh;arXiv,2021

2. AI in Legal Research: How AI Is Provideing Everyone Acces to Information and Leveling the Playing Field for Firms of All Sizes;Heller,2021

3. Fastcase and the Visual Understanding of Judicial Precedents;Walters,2021

4. An evaluation of retrieval effectiveness for a full-text document-retrieval system

5. Document categorization in legal electronic discovery: computer classification vs. manual review

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3