Abstract
Potted plants have been reported to uptake VOCs and help “cleaning” the air. This paper presents the results of a laboratory study in which two species of plants (peace lily and Boston fern) and three kinds of substrates (expanded clay, soil, and activated carbon) were tested and monitored on their capacity to deplete formaldehyde and CO2 in a glass chamber. Formaldehyde and CO2 were selected as indicators to evaluate the biofiltration efficacy of 28 different test conditions; relative humidity (RH) and temperature (T) were monitored during the experiments. To evaluate the efficacy of every test, the clean air delivery rate (CADR) was calculated. Overall, soil had the best performance in removing formaldehyde (~0.07–0.16 m3/h), while plants, in particular, were more effective in reducing CO2 concentrations (peace lily 0.01m3/h) (Boston fern 0.02–0.03 m3/h). On average, plants (~0.03 m3/h) were as effective as dry expanded clay (0.02–0.04 m3/h) in depleting formaldehyde from the chamber. Regarding air-cleaning performance, Boston ferns presented the best performance among the plant species, and the best performing substrate was the soil.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference50 articles.
1. WHO Guidelines for Indoor Air Quality: Selected Pollutants,2010
2. The INDEX Project: Final Report for Critical Appraisal of the Setting and Implementation of Indoor Exposure Limits in the EU;Kotzias,2005
3. Indoor air and human exposure assessment – needs and approaches
4. Concentrations of Volatile Organic Compounds in Indoor Air - A Review
5. European Indoor Air Quality Audit Project in 56 Office Buildings
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献