Biotechnical approach for a continuous simultaneous increase of indoor and outdoor air quality

Author:

Tkachenko T,Mileikovskyi V,Konovaliuk V,Kravchenko M,Satin I

Abstract

Abstract Phytofiltration is the most sustainable way to achieve a better quality of inlet air in buildings in a polluted environment. But they don’t take into account the biorhythms of plants and pollute the inlet air with CO2 during breathing only time. We collected and analysed data about the biorhythms of plants. As a result, a new bi-directional phytofilter was offered for cleaning and oxygenation of the inlet ventilation air, and also to protect the environment by cleaning the exhaust air from different pollutants. The device has spaces with shifted illumination rhythms and a valve system. A controller directs the inlet air to the space(s), where plants release CO2. The outlet air runs through other spaces. Literature data show that in the less favourable case, the CO2 and oxygen emissions are balanced per day without overall CO2 gain to the environment. When plants are growing, they sequestrate CO2 to catch greenhouse gas emissions. Either natural light, artificial light, or a combination of the two can be used. While the second option simply demands one plant metabolism type, the first option needs a combination of CAM metabolism and other plants

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3