Essential Oil Variability of Azorean Cryptomeriajaponica Leaves under Different Distillation Methods, Part 1: Color, Yield and Chemical Composition Analysis

Author:

Arruda FilipeORCID,Rosa José S.,Rodrigues Ana,Oliveira Luísa,Lima AnaORCID,Barroso José G.,Lima ElisabeteORCID

Abstract

This study mainly deals with the effect of hydrodistillation (HD) and water-steam distillation (WSD) methods on the color, yield, and chemical profile of the essential oil (EO) from Cryptomeria japonica fresh leaves from São Miguel Island (Azores Archipelago, Portugal). The yields of EO–HD (pale-yellowish) and EO–WSD (colorless) samples were 1.21% and 0.45% (v/w), respectively. The GC–FID, GC–MS, and 13C-NMR analyses of EO–HD vs. EO–WSD revealed (i) a high-content of monoterpenes (72.8% vs. 86.7%), mainly α-pinene (34.5% vs. 46.4%) and sabinene (20.2% vs. 11.6%), and oxygenated mono- and sesquiterpenes (20.2% vs. 9.6%); (ii) similar sesquiterpene (1.6% vs. 1.6%), β-myrcene (5.9% vs. 5.8%), and camphene (3.5% vs. 3.8%) contents; and (iii) significant differences in other classes/components: EO–HD is richer in oxygenated sesquiterpenes (17.1%, mainly elemol (10.4%) and α-eudesmol (3.4%)) and diterpenes (3%; mostly phyllocladene), while EO–WSD is richer in oxygenated monoterpenes (7.2%, mainly terpinen-4-ol (5.4%)), p-cymene (4.4%), and limonene (3.2%). Overall, the color, yield, and quantitative composition of the EO samples studied are strongly influenced by the distillation method. Nonetheless, this C. japonica leaf EO displayed a consistent α-pinene- and sabinene-rich composition. The same chemotype was found in a commercial Azorean C. japonica leaf EO sample, obtained by industrial steam distillation (SD), as well as in Corsica C. japonica leaf EO–HD. Furthermore, the bioactive composition of our EO samples revealed the potential to be used in green plant protection and in the medical, food, cosmetic, and household industries.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3