Abstract
We report on structuring copper representing soldering pads of printed circuit boards by laser-induced periodic surface structures. Femtosecond laser radiation is used to generate low spatial frequency laser-induced surface structures, having a spatial period of 992 nm and a modulation depth of 120 nm, respectively. The slump of screen-printed solder paste is measured to compare the solder coverage on the pads after the solder process on a hot plate. A comparative study of the coverage of solder paste on a fresh polished pad, a pad stored for two weeks, and femtosecond laser-structured pads reveals the improved wettability of structured pads even after storage. In addition, leaded and lead-free solder pads are compared with the particular advantages of the solder-free pad when periodically laser structured. Our findings are attributed to two major effects: namely, the increase of the surface area and the improved surface chemical wettability. Overall, the application of laser-induced periodic surface structures helps to reduce the demand of lead-based solder in the electronic industry and provides a feasible method for a fast and spatial selective way of surface functionalization.
Funder
Deutsche Forschungsgemeinschaft
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献