Iterative Named Entity Recognition with Conditional Random Fields

Author:

Alves-Pinto Ana,Demus ChristophORCID,Spranger MichaelORCID,Labudde Dirk,Hobley Eleanor

Abstract

Named entity recognition (NER) constitutes an important step in the processing of unstructured text content for the extraction of information as well as for the computer-supported analysis of large amounts of digital data via machine learning methods. However, NER often relies on domain-specific knowledge, being conducted manually in a time- and human-resource-intensive process. These can be reduced with statistical models performing NER automatically. The current work investigates whether Conditional Random Fields (CRF) can be efficiently trained for NER in German texts, by means of an iterative procedure combining self-learning with a manual annotation–active learning–component. The training dataset increases continuously with the iterative procedure. Whilst self-learning did not markedly improve the performance of the CRF for NER, the manual annotation of sentences with the lowest probability of correct prediction clearly improved the model F1-score and simultaneously reduced the amount of manual annotation required to train the model. A model with an F1-score of 0.885 was able to be trained in 11.4 h.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Natural Language Annotation for Machine Learning: A Guide to Corpus-Building for Applications;Pustejovsky,2012

2. A survey of named entity recognition and classification

3. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition;Sang;arXiv,2003

4. A Survey on Deep Learning for Named Entity Recognition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3