Iterative Annotation of Biomedical NER Corpora with Deep Neural Networks and Knowledge Bases

Author:

Silvestri StefanoORCID,Gargiulo FrancescoORCID,Ciampi MarioORCID

Abstract

The large availability of clinical natural language documents, such as clinical narratives or diagnoses, requires the definition of smart automatic systems for their processing and analysis, but the lack of annotated corpora in the biomedical domain, especially in languages different from English, makes it difficult to exploit the state-of-art machine-learning systems to extract information from such kinds of documents. For these reasons, healthcare professionals lose big opportunities that can arise from the analysis of this data. In this paper, we propose a methodology to reduce the manual efforts needed to annotate a biomedical named entity recognition (B-NER) corpus, exploiting both active learning and distant supervision, respectively based on deep learning models (e.g., Bi-LSTM, word2vec FastText, ELMo and BERT) and biomedical knowledge bases, in order to speed up the annotation task and limit class imbalance issues. We assessed this approach by creating an Italian-language electronic health record corpus annotated with biomedical domain entities in a small fraction of the time required for a fully manual annotation. The obtained corpus was used to train a B-NER deep neural network whose performances are comparable with the state of the art, with an F1-Score equal to 0.9661 and 0.8875 on two test sets.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3