3D Stress Analysis of Multilayered Functionally Graded Plates and Shells under Moisture Conditions

Author:

Brischetto SalvatoreORCID,Torre RobertoORCID

Abstract

This paper presents the steady-state stress analysis of single-layered and multilayered plates and shells embedding Functionally Graded Material (FGM) layers under moisture conditions. This solution relies on an exact layer-wise approach; the formulation is unique despite the geometry. It studies spherical and cylindrical shells, cylinders, and plates in an orthogonal mixed curvilinear coordinate system (α, β, z). The moisture conditions are defined at the external surfaces and evaluated in the thickness direction under steady-state conditions following three procedures. This solution handles the 3D Fick diffusion equation, the 1D Fick diffusion equation, and the a priori assumed linear profile. The paper discusses their assumptions and the different results they deliver. Once defined, the moisture content acts as an external load; this leads to a system of three non-homogeneous second-order differential equilibrium equations. The 3D problem is reduced to a system of partial differential equations in the thickness coordinate, solved via the exponential matrix method. It returns the displacements and their z-derivatives as a direct result. The paper validates the model by comparing the results with 3D analytical models proposed in the literature and numerical models. Then, new results are presented for one-layered and multilayered FGM plates, cylinders, and cylindrical and spherical shells, considering different moisture contents, thickness ratios, and material laws.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3