On concurrent multiscale topology optimization for porous structures under hygro‐thermo‐elastic multiphysics with considering evaporation

Author:

Al Ali Musaddiq1ORCID,Shimoda Masatoshi1ORCID

Affiliation:

1. Department of Advanced Science and Technology Toyota Technological Institute 2‐12‐1 Hisakata, Tenpaku‐ku Nagoya Aichi 468‐8511 Japan

Abstract

AbstractLightweight polymeric and natural composite materials are extensively used in modern structures, especially with the demands for environmentally friendly products as well as lowering energy consumption. Furthermore, a high performance‐to‐weight ratio can be attained by utilizing porous composites. However, hygral and thermally induced loads are limiting the robustness of polymeric and natural composite materials, therefore; in this research, concurrent multiscale multiphysics topology optimization is used to design lightweight porous composite structures that have resilience toward mechanical as well as hygral and thermal loads. By establishing two independent representations of the design problem, that is, macro and microscale domains, a concurrent topology optimization framework is implemented, and the effective properties of the microscale (i.e., elastic, thermal conductivity, moisture diffusivity tensors, and hygral as well as thermal expansion coefficients) are calculated and used as the hygro‐thermo‐elastic properties of the macroscale using in‐house MATLAB codes. For hygral physics, moisture transport, as well as evaporation, are simultaneously considered in this study. A sensitivity analysis was conducted on the multiphysics concurrent optimization scheme in order to account for the coupling of macro and microstructure, as well as hygro‐thermo‐elastic physics. Multiple numerical cases were examined, which included different loading and boundary conditions, as well as various spatial configurations. The results showed attaining a high stiffness‐to‐weight ratio for the multiscale optimized porous structure compared to the single‐scale solid structure. Furthermore, a study was conducted on multiple microstructure subsystems to examine the impact of microstructure systems on macrostructure dependence. By combining several microstructures into a single macro design domain, design flexibility was enhanced and the performance‐to‐weight ratio was improved. The study was expanded to include the evaluation of hygro‐thermo‐elastic multiscale multiphysics with an evaporation problem, which was demonstrated through several numerical examples. The introduced formulations showed a successful application of the concurrent multiscale optimization formulations and good coupling on the macro and microscale. Also, the formulations demonstrated a strong influence between the macro and the microscale of the design problem for the topology optimization methods. The successful application of the concurrent multiscale optimization method in this research highlights its potential for designing more efficient and effective structures in the future.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Applied Mathematics,General Engineering,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3