Abstract
The current study introduces a new technique for the analysis of uncertain systems and uncertain processes in geothermics/earth sciences. The method is the second synthetic grey relational analysis (SSGRA) model, which incorporated the advantages of both Deng’s GRA model and the bidirectional absolute GRA model. The SSGRA model has been earlier successfully applied in project management and healthcare systems. The current study is a pioneer in demonstrating the feasibility of the SSGRA model in a geothermal environment. In the current study, the model was used to determine the associations between thermal conductivity and petrophysical parameters in an Algerian reservoir. The results revealed that thermal conductivity is most strongly associated with porosity followed by density and permeability. Their relationships are also discussed. The study concludes with valuable insights about the model and its application in engineering and natural sciences especially when the system contains uncertainty, which may arise either due to insufficient data or uncertain relationships among the parameters associated with the system or its processes.
Funder
Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献