Abstract
With the advancement of technologies it is becoming imperative to have a stable, secure and uninterrupted supply of power to electronic systems as well as to ensure the identification of faults occurring in these systems quickly and efficiently in case of any accident. Spiking neural P system (SNPS) is a popular parallel distributed computing model. It is inspired by the structure and functioning of spiking neurons. It belongs to the category of neural-like P systems and is well-known as a branch of the third generation neural networks. SNPS and its variants can perform the task of fault diagnosis in power systems efficiently. In this paper, we provide a comprehensive survey of these models, which can perform the task of fault diagnosis in transformers, power transmission networks, traction power supply systems, metro traction power supply systems, and electric locomotive systems. Furthermore, we discuss the use of these models in fault section estimation of power systems, fault location identification in distribution network, and fault line detection. We also discuss a software tool which can perform the task of fault diagnosis automatically. Finally, we discuss future research lines related to this topic.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献