Boosting Fraud Detection in Mobile Payment with Prior Knowledge

Author:

Sun Quan,Tang Tao,Chai Hongfeng,Wu Jie,Chen YangORCID

Abstract

With the prevalence of mobile e-commerce, fraudulent transactions conducted by robots are becoming increasingly common in mobile payments, which is severely undermining market fairness and resulting in financial losses. It has become a difficult problem for mobile applications to identify robotic automation accurately and efficiently from a massive number of transactions. The current research does not propose any effective method or engineering implementation. In this article, an extension to boost algorithms is presented that permits the incorporation of prior human knowledge as a means of compensating for a training data shortage and improving prediction results. Prior human knowledge is accumulated from historical fraud transactions or transferred from different domains in the form of expert rules and blacklists. The knowledge is applied to extract risk features from transaction data, risk features together with normal features are input into the boosting algorithm to perform training, and therefore we incorporate boosting algorithm with prior human knowledge to improve the performance of the model. For the first time we verified the effectiveness of the method via a widely deployed mobile APP with 150+ million users, and by taking experiments on a certain dataset, the extended boosting model shows an accuracy increase from 0.9825 to 0.9871 and a recall rate increase from 0.888 to 0.948. We also investigated feature differences between robots and normal users and we discovered the behavior patterns of robotic automation that include less spatial motion detected by device sensors (1/10 of normal user pattern), higher IP group-clustering ratio (60% in robots vs. 15% in normal users), higher jailbroken device rate (92.47% vs. 4.64%), more irregular device names and fewer IP address changes. The quantitative analysis result is helpful for APP developers and service providers to understand and prevent fraudulent transactions from robotic automation.This article proposed an optimized boosting model, which has better use in the field of robotic automation detection of mobile phones. By combining prior knowledge and feature importance analysis, the model is more robust when the actual dataset is unbalanced or with few-short samples. The model is also more explainable as feature analysis is available which can be used for generating disposal rules in the actual fake mobile user blocking systems.

Funder

Program of Shanghai Academic/Technology Research Leader under Grant

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference53 articles.

1. Detection of Fake Reviews: Analysis of Sellers’ Manipulation Behavior

2. Detecting Malicious Social Robots with Generative Adversarial Networks;Wu;KSII Trans. Internet Inf. Syst.,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. E-Commerce Fraud Detection Based on Machine Learning Techniques: Systematic Literature Review;Big Data Mining and Analytics;2024-06

2. Detecting Mobile Payment Fraud: Leveraging Machine Learning for Rapid Analysis;2023 Tenth International Conference on Social Networks Analysis, Management and Security (SNAMS);2023-11-21

3. Special Issue on Artificial Intelligence and Complex Systems;Applied Sciences;2023-10-11

4. National Payment Switches and the Power of Cognitive Computing against Fintech Fraud;Big Data and Cognitive Computing;2023-04-17

5. A Multi-User Shared Mobile Payment Protocol in the Context of Smart Homes;International Journal of Information Security and Privacy;2022-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3