Author:
Liu Cheng,Wang Tong,Zhang Shuguang,Ren Bing
Abstract
Space-time adaptive processing (STAP) plays an essential role in clutter suppression and moving target detection in airborne radar systems. The main difficulty is that independent and identically distributed (i.i.d) training samples may not be sufficient to guarantee the performance in the heterogeneous clutter environment. Currently, most sparse recovery/representation (SR) techniques to reduce the requirement of training samples still suffer from high computational complexities. To remedy this problem, a fast group sparse Bayesian learning approach is proposed. Instead of employing all the dictionary atoms, the proposed algorithm identifies the support space of the data and then employs the support space in the sparse Bayesian learning (SBL) algorithm. Moreover, to extend the modified hierarchical model, which can only apply to real-valued signals, the real and imaginary components of the complex-valued signals are treated as two independent real-valued variables. The efficiency of the proposed algorithm is demonstrated both with the simulated and measured data.
Funder
National Key R&D Program of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献