On the Efficient Implementation of Sparse Bayesian Learning-Based STAP Algorithms

Author:

Liu Kun,Wang Tong,Wu Jianxin,Liu Cheng,Cui WeichenORCID

Abstract

Sparse Bayesian learning-based space–time adaptive processing (SBL-STAP) algorithms can achieve superior clutter suppression performance with limited training sample support in practical heterogeneous and non-stationary clutter environments. However, when the system has high degrees of freedom (DOFs), SBL-STAP algorithms suffer from high computational complexity, since the large-scale matrix calculations and the inversion operations of large-scale covariance matrices are involved in the iterative process. In this article, we consider a computationally efficient implementation for SBL-STAP algorithms. The efficient implementation is based on the fact that the covariance matrices that need to be updated in the iterative process of the SBL-STAP algorithms have a Hermitian Toplitz-block-Toeplitz (HTBT) structure, with the result being that the inverse covariance matrix can be expressed in closed form by using a special case of the Gohberg–Semencul (G-S) formula. Based on the G-S-type factorization of the inverse covariance matrix and the structure of the used dictionary matrix, we can perform almost all operations in the SBL-STAP algorithms by 2-D FFT/IFFT. As a result, compared with the original SBL-STAP algorithms, even for moderate data sizes, the proposed algorithms can directly reduce the computational load by about two orders of magnitudes without any performance loss. Finally, simulation results validate the effectiveness of the proposed algorithms.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference60 articles.

1. Space-Time Adaptive Processing for Airborne Radar;Ward,1994

2. Principles of Space-Time Adaptive Processing;Klemm,2002

3. Space-Time Adaptive Processing for Radar;Guerci,2003

4. Theory of Adaptive Radar

5. Rapid Convergence Rate in Adaptive Arrays

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3