Rheological and Micro-Rheological Properties of Chicory Inulin Gels

Author:

Xu Jingyuan1,Kenar James A.2

Affiliation:

1. Plant Polymer Research, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA

2. Functional Food Research, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA

Abstract

As a soluble fiber, inulin is present in many plants and has many applications in food and non-food products. In this work, we investigated the rheological properties of inulin dispersions at seven concentrations. The linear viscoelastic properties of inulin were determined using a conventional mechanical rheometer. At 25 wt%, inulin exhibited fluid-like viscoelastic liquid behavior. However, when concentrations were ≥27.5 wt%, inulin exhibited gel-like viscoelastic properties. The viscoelastic properties (moduli and viscosities) increased with increasing inulin concentration. The high-frequency linear rheological properties of inulin were also investigated using the modern light scattering technique, diffusion wave spectroscopy (DWS). The diffusion wave spectroscopy (DWS) measurements showed the amplitude of complex moduli (|G*(ω)|) of inulin gels (≥27.5 wt%) to be proportional to ½ power law of the frequency, which suggests inulin gels behave similarly to flexible polymers. The non-linear steady shear experiments demonstrated that inulin exhibited shear-thinning behavior that was well fitted by a power law constitutive model. The trend of the power law exponent from the experiments indicated that the shear-thinning extent for inulin was greater as the inulin concentration increased. The results of this work indicated that the properties of inulin gel can be manipulated by altering its concentration. Therefore, the desired inulin product can be designed accordingly. These results can be used to direct further food and non-food applications, such as wound healing materials for inulin gels.

Funder

The United States Department of Agriculture, Agricultural Research Service

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3