Influence of Deposition Method on the Structural and Optical Properties of Ge2Sb2Te5

Author:

Simandan Iosif-Daniel,Sava Florinel,Buruiana Angel-Theodor,Galca Aurelian-CatalinORCID,Becherescu Nicu,Burducea IonORCID,Mihai ClaudiaORCID,Velea AlinORCID

Abstract

Ge2Sb2Te5 (GST-225) is a chalcogenide material with applications in nonvolatile memories. However, chalcogenide material properties are dependent on the deposition technique. GST-225 thin films were prepared using three deposition methods: magnetron sputtering (MS), pulsed laser deposition (PLD) and a deposition technique that combines MS and PLD, namely MSPLD. In the MSPLD technique, the same bulk target is used for sputtering but also for PLD at the same time. The structural and optical properties of the as-deposited and annealed thin films were characterized by Rutherford backscattering spectrometry, X-ray reflectometry, X-ray diffraction, Raman spectroscopy and spectroscopic ellipsometry. MS has the advantage of easily leading to fully amorphous films and to a single crystalline phase after annealing. MS also produces the highest optical contrast between the as-deposited and annealed films. PLD leads to the best stoichiometric transfer, whereas the annealed MSPLD films have the highest mass density. All the as-deposited films obtained with the three methods have a similar optical bandgap of approximately 0.7 eV, which decreases after annealing, mostly in the case of the MS sample. This study reveals that the properties of GST-225 are significantly influenced by the deposition technique, and the proper method should be selected when targeting a specific application. In particular, for electrical and optical phase change memories, MS is the best suited deposition method.

Funder

Romanian Ministry of Research and Innovation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3