Abstract
Accurate segmentation of lung nodules from pulmonary computed tomography (CT) slices plays a vital role in the analysis and diagnosis of lung cancer. Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance in the automatic segmentation of lung nodules. However, they are still challenged by the large diversity of segmentation targets, and the small inter-class variances between the nodule and its surrounding tissues. To tackle this issue, we propose a features complementary network according to the process of clinical diagnosis, which made full use of the complementarity and facilitation among lung nodule location information, global coarse area, and edge information. Specifically, we first consider the importance of global features of nodules in segmentation and propose a cross-scale weighted high-level feature decoder module. Then, we develop a low-level feature decoder module for edge feature refinement. Finally, we construct a complementary module to make information complement and promote each other. Furthermore, we weight pixels located at the nodule edge on the loss function and add an edge supervision to the deep supervision, both of which emphasize the importance of edges in segmentation. The experimental results demonstrate that our model achieves robust pulmonary nodule segmentation and more accurate edge segmentation.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献