Enhanced Production of Biosurfactant from Bacillus subtilis Strain Al-Dhabi-130 under Solid-State Fermentation Using Date Molasses from Saudi Arabia for Bioremediation of Crude-Oil-Contaminated Soils

Author:

Al-Dhabi Naif Abdullah,Esmail Galal AliORCID,Valan Arasu Mariadhas

Abstract

Crude oil and its derivatives are the most important pollutants in natural environments. Bioremediation of crude oil using bacteria has emerged as a green cleanup approach in recent years. In this study, biosurfactant-producing Bacillus subtilis strain Al-Dhabi-130 was isolated from the marine soil sediment. This organism was cultured in solid-state fermentation using agro-residues to produce cost-effective biosurfactants for the bioremediation of crude-oil contaminated environments. Date molasses improved biosurfactant production and were used for further optimization studies. The traditional “one-variable-at-a-time approach”, “two-level full factorial designs”, and a response surface methodology were used to optimize the concentrations of date molasses and nutrient supplements for surfactant production. The optimum bioprocess conditions were 79.3% (v/w) moisture, 34 h incubation period, and 8.3% (v/v) glucose in date molasses. To validate the quadratic model, the production of biosurfactant was performed in triplicate experiments, with yields of 74 mg/g substrate. These findings support the applications of date molasses for the production of biosurfactants by B. subtilis strain Al-Dhabi-130. Analytical experiments revealed that the bacterial strain degraded various aromatic hydrocarbons and n-alkanes within two weeks of culture with 1% crude oil. The crude biosurfactant produced by the B. subtilis strain Al-Dhabi-130 desorbed 89% of applied crude oil from the soil sample. To conclude, biosurfactant-producing bacterial strains can increase emulsification of crude oil and support the degradation of crude oil.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3