Relationships between Foot Morphology and Foot Muscle Strength in Healthy Adults

Author:

Xiao Songlin,Zhang Xini,Deng Liqin,Zhang Shen,Cui Kedong,Fu WeijieORCID

Abstract

The purpose of this study was to investigate if measurements of foot morphology in sitting and standing positions can predict foot muscle strength. Twenty-six healthy male adults were recruited, and their foot morphology and foot muscle strength were measured. Foot morphological variables, toe flexor strength, and metatarsophalangeal joint flexor strength were measured by using a digital caliper, Ailitech-AFG500 dynameter and metatarsophalangeal joint flexor strength tester, respectively. Partial correlation and multivariate stepwise regression were used to explore the relationships between foot morphology and toe/metatarsophalangeal joint strength. Results adjusted by age and body mass index were as follows: (1) truncated foot length in sitting and standing positions and foot width in standing position were positively correlated with the flexor strength of the first toe; (2) foot length, foot width, and truncated foot length in both positions were positively related to the flexor strength of the other toes; (3) arch height index in sitting position and differences in navicular height were negatively associated with the flexor strength of the other toes; (4) differences in foot width were negatively associated with metatarsophalangeal joint flexor strength; and (5) the multivariate stepwise regression model showed that truncated foot length in sitting position, navicular height in standing position, differences in navicular height, foot width in sitting position, and differences in foot width were significantly correlated with toe/metatarsophalangeal joint flexor strength. Simple measurements of foot morphological characteristics can effectively predict foot muscle strength. Preliminary findings provided practical implications for the improvement of the foot ability by making specific foot muscle training sessions in professional sports and by compensating the predicted muscle strength defects to prevent foot injury.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3