Development and Earliest Validation of a Portable Device for Quantification of Hallux Extension Strength (QuHalEx)

Author:

Hile Elizabeth S.12,Ghazi Mustafa3,Chandrashekhar Raghuveer4,Rippetoe Josiah1,Fox Ashley1,Wang Hongwu4ORCID

Affiliation:

1. Department of Rehabilitation Sciences, University of Oklahoma Health Sciences Center College of Allied Health, 1200 North Stonewall Ave., Oklahoma City, OK 73117, USA

2. OU Health Stephenson Cancer Center, 800 NE 10th Street, Oklahoma City, OK 73104, USA

3. Infant Neuromotor Control Laboratory, Division of Developmental-Behavioral Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA

4. Department of Occupational Therapy, University of Florida, Gainesville, FL 32603, USA

Abstract

Hallux strength is associated with sports performance and balance across the lifespan, and independently predicts falls in older adults. In rehabilitation, Medical Research Council (MRC) Manual Muscle Testing (MMT) is the clinical standard for hallux strength assessment, but subtle weakness and longitudinal changes in strength may go undetected. To address the need for research-grade yet clinically feasible options, we designed a new load cell device and testing protocol to Quantify Hallux Extension strength (QuHalEx). We aim to describe the device, protocol and initial validation. In benchtop testing, we used eight precision weights to apply known loads from 9.81 to 78.5 N. In healthy adults, we performed three maximal isometric tests for hallux extension and flexion on the right and left sides. We calculated the Intraclass Correlation Coefficient (ICC) with 95% confidence interval and descriptively compared our isometric force–time output to published parameters. QuHalEx benchtop absolute error ranged from 0.02 to 0.41 (mean 0.14) N. Benchtop and human intrasession output was repeatable (ICC 0.90–1.00, p < 0.001). Hallux strength in our sample (n = 38, age 33.5 ± 9.6 years, 53% female, 55% white) ranged from 23.1 to 82.0 N peak extension force and 32.0 to 142.4 N peak flexion, and differences of ~10 N (15%) between toes of the same MRC grade (5) suggest that QuHalEx is able to detect subtle weakness and interlimb asymmetries that are missed by MMT. Our results support ongoing QuHalEx validation and device refinement with a longer-term goal of widespread clinical and research application.

Funder

Presbyterian Health Foundation

New Investigator Seed Grant Award to Elizabeth Hile

Oklahoma Tobacco Settlement Endowment Trust

National Cancer Institute Cancer Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3