Estimation of the Inhaled Dose of Airborne Pollutants during Commuting: Case Study and Application for the General Population

Author:

Borghi FrancescaORCID,Fanti GiacomoORCID,Cattaneo AndreaORCID,Campagnolo DavideORCID,Rovelli SabrinaORCID,Keller MartaORCID,Spinazzè AndreaORCID,Cavallo Domenico Maria

Abstract

During rush hours, commuters are exposed to high concentrations and peaks of traffic-related air pollutants. The aims of this study were therefore to extend the inhaled dose estimation outcomes from a previous work investigating the inhaled dose of a typical commuter in the city of Milan, Italy, and to extend these results to a wider population. The estimation of the dose of pollutants inhaled by commuters and deposited within the respiratory tract could be useful to help commuters in choosing the modes of transport with the lowest exposure and to increase their awareness regarding this topic. In addition, these results could provide useful information to policy makers, for the creation/improvement of a mobility that takes these results into account. The principal result outcomes from the first part of the project (case study on a typical commuter in the city of Milan) show that during the winter period, the maximum deposited mass values were estimated in the “Other” environments and in “Underground”. During the summer period, the maximum values were estimated in the “Other” and “Walking (high-traffic conditions)” environments. For both summer and winter, the lowest values were estimated in the “Car” and “Walking (low-traffic conditions)” environments. Regarding the second part of the study (the extension of the results to the general population of commuters in the city of Milan), the main results show that the period of permanence in a given micro-environment (ME) has an important influence on the inhaled dose, as well as the pulmonary ventilation rate. In addition to these results, it is of primary importance to report how the inhaled dose of pollutants can be strongly influenced by the time spent in a particular environment, as well as the subject’s pulmonary ventilation rate and pollutant exposure levels. For these reasons, the evaluation of these parameters (pulmonary ventilation rate and permanence time, in addition to the exposure concentration levels) for estimating the inhaled dose is of particular relevance.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3