An NS-3 Implementation and Experimental Performance Analysis of IEEE 802.15.6 Standard under Different Deployment Scenarios

Author:

Kim Beom-Su,Sung Tae-EungORCID,Kim Ki-IlORCID

Abstract

Various simulation studies for wireless body area networks (WBANs) based on the IEEE 802.15.6 standard have recently been carried out. However, most of these studies have applied a simplified model without using any major components specific to IEEE 802.15.6, such as connection-oriented link allocations, inter-WBAN interference mitigation, or a two-hop star topology extension. Thus, such deficiencies can lead to an inaccurate performance analysis. To solve these problems, in this study, we conducted a comprehensive review of the major components of the IEEE 802.15.6 standard and herein present modeling strategies for implementing IEEE 802.15.6 MAC on an NS-3 simulator. In addition, we configured realistic network scenarios for a performance evaluation in terms of throughput, average delay, and power consumption. The simulation results prove that our simulation system provides acceptable levels of performance for various types of medical applications, and can support the latest research topics regarding the dynamic resource allocation, inter-WBAN interference mitigation, and intra-WBAN routing.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference42 articles.

1. 802.15.6-2012 IEEE Standards for Local and Metropolitan Area Networks–Part 15.6: Wireless Body Area Networks,2012

2. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications,1999

3. A forwarder based temperature aware routing protocol in wireless body area networks;Kim;J. Internet Technol.,2019

4. Energy-Aware WBAN for Health Monitoring Using Critical Data Routing (CDR)

5. Energy Optimized Congestion Control-Based Temperature Aware Routing Algorithm for Software Defined Wireless Body Area Networks

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3