A Gravity-Based Food Flow Model to Identify the Source of Foodborne Disease Outbreaks

Author:

Schlaich TimORCID,Horn Abigail L.ORCID,Fuhrmann MarcelORCID,Friedrich Hanno

Abstract

Computational traceback methodologies are important tools for investigations of widespread foodborne disease outbreaks as they assist investigators to determine the causative outbreak location and food item. In modeling the entire food supply chain from farm to fork, however, these methodologies have paid little attention to consumer behavior and mobility, instead making the simplifying assumption that consumers shop in the area adjacent to their home location. This paper aims to fill this gap by introducing a gravity-based approach to model food-flows from supermarkets to consumers and demonstrating how models of consumer shopping behavior can be used to improve computational methodologies to infer the source of an outbreak of foodborne disease. To demonstrate our approach, we develop and calibrate a gravity model of German retail shopping behavior at the postal-code level. Modeling results show that on average about 70 percent of all groceries are sourced from non-home zip codes. The value of considering shopping behavior in computational approaches for inferring the source of an outbreak is illustrated through an application example to identify a retail brand source of an outbreak. We demonstrate a significant increase in the accuracy of a network-theoretic source estimator for the outbreak source when the gravity model is included in the food supply network compared with the baseline case when contaminated individuals are assumed to shop only in their home location. Our approach illustrates how gravity models can enrich computational inference models for identifying the source (retail brand, food item, location) of an outbreak of foodborne disease. More broadly, results show how gravity models can contribute to computational approaches to model consumer shopping interactions relating to retail food environments, nutrition, and public health.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference53 articles.

1. WHO Estimates of the Global Burden of Foodborne Diseases,2015

2. Foodborne Illness Acquired in the United States—Major Pathogens

3. RKI Meldet Dritten Listerien-Todesfallhttps://www.aerztezeitung.de/Medizin/RKI-meldet-dritten-Listerien-Todesfall-402360.html

4. RKI-Archiv 2019—Listeriose-Ausbruch mit Listeria Monocytogenes Sequenz-Cluster-Typ 2521 (Sigma1) in Deutschlandhttps://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2019/41/Art_02.html

5. Exploring Historical Canadian Foodborne Outbreak Data Sets for Human Illness Attribution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3