Seasonal Shift in Physicochemical Factors Revealed the Ecological Variables that Modulate the Density of Acinetobacter Species in Freshwater Resources

Author:

Adewoyin M. A.,Okoh A. I.ORCID

Abstract

Certain environmental variables are responsible for the survival of microorganisms in aquatic environments. The influence of these environmental factors in each season (winter, autumn, spring and summer) of the year can be used to track changes in a microbial population in freshwater resources. In this study, we assessed the effect of seasonal shifts in environmental variables including temperature, pH, total dissolved solids (TDS), total suspended solids (TSS), biochemical oxygen demand (BOD) and turbidity (TBS) among others on the density of Acinetobacter species in the Great Fish, Keiskamma and Tyhume rivers in the Eastern Cape Province, South Africa. Water samples and values of the environmental factors were taken from the rivers for 12 months. The density of presumptive Acinetobacter species was estimated from the culture of water samples on a CHROMagar selective medium, while the Acinetobacter-specific recA gene was targeted for the identification of Acinetobacter species using PCR assay. The multivariate relationship between seasons and changes in variables was created using PCA, while the effect of seasonal shifts in the environmental variables on the density of Acinetobacter species was evaluated using correlation test and topological graphs. Positive association patterns were observed between the seasons, environmental factors and the bacterial density in the rivers. In addition, temperature, TBS, TSS and BOD tended to influence the bacterial density more than other physicochemical factors in the rivers across the seasons. Of the total 1107 presumptive Acinetobacter species, 844 were confirmed as Acinetobacter species. Therefore, these findings suggested that the rivers contain Acinetobacter species that could be useful for basic and applied study in ecology or biotechnology, while their clinical relevance in causing diseases cannot be underestimated.

Funder

The World Academy of Sciences

South African Medical Research Council

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3