Abstract
Eucalyptus globulus wood samples were subjected to preliminary aqueous processing to remove water-soluble extractives and hemicelluloses, and the resulting solid (mainly made up of cellulose and lignin) was employed as a substrate for converting the cellulosic fraction into mixtures of levulinic and formic acid through a sulfuric acid-catalyzed reaction. These runs were carried out in a microwave-heated reactor at different temperatures and reaction times, operating in single-batch or cross-flow modes, in order to identify the most favorable operational conditions. Selected liquid phases deriving from these experiments, which resulted in concentrated levulinic acid up to 408 mmol/L, were then employed for γ-valerolactone production by levulinc acid hydrogenation in the presence of the commercial 5% Ru/C catalyst. In order to assess the effects of the main reaction parameters, hydrogenation experiments were performed at different temperatures, reaction times, amounts of ruthenium catalyst and hydrogen pressure. Yields of γ-valerolactone in the range of 85–90 mol % were obtained from the hydrogenation of the wood-derived solutions containing levulinic acid, obtained by single-batch operation or by the cross-flow process. The negative effect of co-produced formic acid present in crude levulinic acid solutions was evidenced and counteracted efficiently by allowing the preliminary thermal decomposition of formic acid itself.
Funder
Ministero dell’Istruzione, dell’Università e della Ricerca
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献