Niobium and Zirconium Phosphates as Green and Water-Tolerant Catalysts for the Acid-Catalyzed Valorization of Bio-Based Chemicals and Real Lignocellulosic Biomasses

Author:

Antonetti ClaudiaORCID,Raspolli Galletti Anna MariaORCID,Licursi DomenicoORCID,Fulignati SaraORCID,Di Fidio NicolaORCID,Zanetti FedericaORCID,Monti Andrea,Tabanelli TommasoORCID,Cavani FabrizioORCID

Abstract

Commercial niobium and synthesized zirconium phosphates were tested as water-tolerant heterogeneous acid catalysts in the hydrothermal conversion of different bio-based substrates. Different acid-catalyzed reactions were performed using biomass-derived model compounds and more complex real lignocellulosic biomasses as the substrate. The conversion of glucose and cellulose was preliminarily investigated. Then, a wide plethora of raw lignocellulosic biomasses, such as conifer wood sawdust, Jerusalem artichoke, sorghum, miscanthus, foxtail millet, hemp and Arundo donax, were valorized towards the production of water-soluble saccharides, 5-hydroxymethylfurfural (HMF), levulinic acid (LA) and furfural. The different catalytic performances of the two phosphates were explained on the basis of their acid features, total acidity, Brønsted/Lewis acid sites ratio and strength. Moreover, a better insight into their structure–acidity relationship was proposed. The different acid properties of niobium and zirconium phosphates enabled us to tune the reaction towards target products, achieving from glucose maximum HMF and LA yields of 24.4 and 24.0 mol%, respectively. Remarkably, when real Jerusalem artichoke biomass was adopted in the presence of niobium and zirconium phosphate, maximum yields of furanic compounds and cellulose-derived sugars of 12.7 and 50.0 mol%, respectively, were obtained, after only 1 h of reaction. The synthesized hydrolysates, which were found to be rich in C5 and C6 carbohydrates, can be better exploited for the cascade production of more added-value bio-products.

Funder

Italian Ministero dell'Istruzione dell'Università e della Ricerca

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3