A Survey of Underwater Acoustic Target Recognition Methods Based on Machine Learning

Author:

Luo Xinwei1,Chen Lu1,Zhou Hanlu1,Cao Hongli1

Affiliation:

1. Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing 210096, China

Abstract

Underwater acoustic target recognition (UATR) technology has been implemented widely in the fields of marine biodiversity detection, marine search and rescue, and seabed mapping, providing an essential basis for human marine economic and military activities. With the rapid development of machine-learning-based technology in the acoustics field, these methods receive wide attention and display a potential impact on UATR problems. This paper reviews current UATR methods based on machine learning. We focus mostly, but not solely, on the recognition of target-radiated noise from passive sonar. First, we provide an overview of the underwater acoustic acquisition and recognition process and briefly introduce the classical acoustic signal feature extraction methods. In this paper, recognition methods for UATR are classified based on the machine learning algorithms used as UATR technologies using statistical learning methods, UATR methods based on deep learning models, and transfer learning and data augmentation technologies for UATR. Finally, the challenges of UATR based on the machine learning method are summarized and directions for UATR development in the future are put forward.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3