Joint Representation and Recognition for Ship-Radiated Noise Based on Multimodal Deep Learning

Author:

Yuan FeiORCID,Ke Xiaoquan,Cheng En

Abstract

Ship recognition based on ship-radiated noise is one of the most important and challenging subjects in underwater acoustic signal processing. The recognition methods for ship-radiated noise recognition include traditional methods and deep learning (DL) methods. Developing from the DL methods and inspired by audio–video speech recognition (AVSR), the paper further introduces multimodal deep learning (multimodal-DL) methods for the recognition of ship-radiated noise. In this paper, ship-radiated noise (acoustics modality) and visual observation of the ships (visual modality) are two different modalities that the multimodal-DL methods model on. The paper specially designs a multimodal-DL framework, the multimodal convolutional neural networks (multimodal-CNNs) for the recognition of ship-radiated noise. Then the paper proposes a strategy based on canonical correlation analysis (CCA-based strategy) to build a joint representation and recognition on the two different single-modality (acoustics modality and visual modality). The multimodal-CNNs and the CCA-based strategy are tested on real ship-radiated noise data recorded. Experimental results show that, using the CCA-based strategy, strong-discriminative information can be built from weak-discriminative information provided from a single-modality. Experimental results also show that as long as any one of the single-modalities can provide information for the recognition, the multimodal-DL methods can have a much better multiclass recognition performance than the DL methods. The paper also discusses the advantages and superiorities of the multimodal-Dl methods over the traditional methods for ship-radiated noise recognition.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3