Abstract
Unsaturated fatty acids are the main components of vegetable oils. Fatty acid desaturase 2 (FAD2) catalyzes oleic acid (OA) into linoleic acid (LA) transformations, which are essential to the profile of FAs in seeds. To further understand the roles of FAD2s in the synthesis of oil, the evolution and biocatalysis of FAD2s were comprehensively analyzed. The evolution history of the FAD2 gene family showed that most of the FAD2 genes formed monophyletic clades except in eudicots. The FAD2 genes in some eudicots diverged into constitutive and seed-specific expression clades. Notably, the biocatalysis of seed-specific or -abundant expression FAD2s in soybean, perilla, rice, and spruce revealed that their catalytic activity was strongly correlated with the total oil content of their seeds in nature. Additionally, it was found that I and Y in site 143 of GmaFAD2-1 were strictly conserved in the seed-specific and constitutive expression clades of Fabaceae, respectively. Furthermore, the site-directed mutation demonstrated that I and Y are vital to improving and reducing the activity of GmaFAD2s. Therefore, the results indicate that the activity of FAD2s in seeds might be a reference to the total oil content of seeds, and site 143 might have been specifically evolved to be required for the activity of FAD2s in some expression-diverged eudicots, especially in legumes.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献